Recognition of RNA branch point sequences by the KH domain of splicing factor 1 (mammalian branch point binding protein) in a splicing factor complex.

نویسندگان

  • H Peled-Zehavi
  • J A Berglund
  • M Rosbash
  • A D Frankel
چکیده

Mammalian splicing factor 1 (SF1; also mammalian branch point binding protein [mBBP]; hereafter SF1/mBBP) specifically recognizes the seven-nucleotide branch point sequence (BPS) located at 3' splice sites and participates in the assembly of early spliceosomal complexes. SF1/mBBP utilizes a "maxi-K homology" (maxi-KH) domain for recognition of the single-stranded BPS and requires a cooperative interaction with splicing factor U2AF65 bound to an adjacent polypyrimidine tract (PPT) for high-affinity binding. To investigate how the KH domain of SF1/mBBP recognizes the BPS in conjunction with U2AF and possibly other proteins, we constructed a transcriptional reporter system utilizing human immunodeficiency virus type 1 Tat fusion proteins and examined the RNA-binding specificity of the complex using KH domain and RNA-binding site mutants. We first established that SF1/mBBP and U2AF cooperatively assemble in our reporter system at RNA sites composed of the BPS, PPT, and AG dinucleotide found at 3' splice sites, with endogenous proteins assembled along with the Tat fusions. We next found that the activities of the Tat fusion proteins on different BPS variants correlated well with the known splicing efficiencies of the variants, supporting a model in which the SF1/mBBP-BPS interaction helps determine splicing efficiency prior to the U2 snRNP-BPS interaction. Finally, the likely RNA-binding surface of the maxi-KH domain was identified by mutagenesis and appears similar to that used by "simple" KH domains, involving residues from two putative alpha helices, a highly conserved loop, and parts of a beta sheet. Using a homology model constructed from the cocrystal structure of a Nova KH domain-RNA complex (Lewis et al., Cell 100:323-332, 2000), we propose a plausible arrangement for SF1/mBBP-U2AF complexes assembled at 3' splice sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mer1p is a modular splicing factor whose function depends on the conserved U2 snRNP protein Snu17p

Mer1p activates the splicing of at least three pre-mRNAs (AMA1, MER2, MER3) during meiosis in the yeast Saccharomyces cerevisiae. We demonstrate that enhancer recognition by Mer1p is separable from Mer1p splicing activation. The C-terminal KH-type RNA-binding domain of Mer1p recognizes introns that contain the Mer1p splicing enhancer, while the N-terminal domain interacts with the spliceosome a...

متن کامل

Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF.

Two sequences important for pre-mRNA splicing precede the 3' end of introns in higher eukaryotes, the branch point (BP) and the polypyrimidine (Py) tract. Initial recognition of these signals involves cooperative binding of the splicing factor SF1/mammalian branch point binding protein (mBBP) to the BP and of U2AF(65) to the Py tract. Both factors are required for recruitment of the U2 small nu...

متن کامل

An SF1 affinity model to identify branch point sequences in human introns

Splicing factor 1 (SF1) binds to the branch point sequence (BPS) of mammalian introns and is believed to be important for the splicing of some, but not all, introns. To help identify BPSs, particularly those that depend on SF1, we generated a BPS profile model in which SF1 binding affinity data, validated by branch point mapping, were iteratively incorporated into computational models. We searc...

متن کامل

A novel intronic cis element, ISE/ISS-3, regulates rat fibroblast growth factor receptor 2 splicing through activation of an upstream exon and repression of a downstream exon containing a noncanonical branch point sequence.

Mutually exclusive splicing of fibroblast growth factor receptor 2 (FGFR2) exons IIIb and IIIc yields two receptor isoforms, FGFR2-IIIb and -IIIc, with distinctly different ligand binding properties. Several RNA cis elements in the intron (intron 8) separating these exons have been described that are required for splicing regulation. Using a heterologous splicing reporter, we have identified a ...

متن کامل

Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA.

Mammalian splicing factor SF1 consists of a single polypeptide of 75 kDa and is required for the formation of the first ATP-dependent spliceosomal complex. Three cDNAs encoding variant forms of SF1 have been isolated and four highly related cDNAs have been found in current databases. Comparison of the cDNA sequences suggests that different SF1 mRNAs are generated by alternative splicing of a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 21 15  شماره 

صفحات  -

تاریخ انتشار 2001